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SUMMARY

A general integral form of the boundary-lqer eqyation is derived
from the Frandtl partial-differential.boundary-layer equation. The
generql integral equation, valid for either lami~ or turbulent incom-
pressible bounds.ry-lsyerflow, contains the Von Karm6n momentum equation,
the Mnetic-energy eqpation, and the Loitsianskii eq.uitionas special
cases.

In an attempt to obtain a practical method for the calculation of
the development of the.turbulent boundary layer, use is made of the
experimental finding-that all the-veloci~ profiles of the turbulent
boundary layer form essentially a single-parameter fsmily. The general
equation is thereby changed to a simpler one from which a egyation for
the space rate of change of the shape parameter of the turbulent boundary
layer can be obtained.

The resulting equation for the space rate of change of the veloci@-
profile parameter is restrictedly the assumption that the velocity

“ profilep of the turbulent bouudary layer can be approximated by power
profiles. Two of the resulting equations sre used to calculate the dis-
tribution of the profile shape parameter over an airfoil for one experi-
mentally determined ~essure distribution. Although different assump-
tions were tried for the shearing stress across the boundary lsyer, the
calculated distribution of the profile shape parsmeter did not a~ee
exactly with the experimental distribution.

‘An+3xsminatiQn is made of the effect of using the e~erhen~
determined single-parameter femi~v of velocity profiles instead of the
power profiles on certain functions that occur in the equation for the
space rate of change of the velocity-profile parsmeter. One calculation ,

. of the distribution of the profile shape parameter over an airfoil is

.
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also made for the experimentally determined pressure distribution by
using the single-parameterfemily of velocity profiles found from experi-
ment. A comparison of the i?esultswith those of a calculation mede with
the same assumptions except for the use of power profiles shows some
difference near the separation point. It is believed, however, that the
apparent lack of reliabili~ of the specific eqpations used to make the
calculations is caused mainly by the lack of precise knowledge concerning
the surface shear and the distribution of the shearing stress across the
turbulent boundary leyer. The present analysis emphasizes the need for
information concerning the sheering stresses in turbulent boundary leyers.

INICRODUCTION

An outstanding problem in aerodynamic theory is to calculate whether
the flow will separate from the surface of a specific body and, if SO,
where the separation will occur. The concept of the boundary layer and
the equations that describe the flow in it, introduced by Prendtl (refer-
ence 1) and first worked out in some detail by Blasiue (reference 2),
reduce the problem to solving the l%andtl boun~-leyer equation when
the flow is laminar. Because of the mathematical difficulty of solving
the eqyation, approximate methods were developed for tm calculation of
the properties of the leminar boundary leyer (reference 3). In some of
these methods, for e-le, the Pohlhausen method (reference 3) and the
Wieghardt method (reference 4), a functional form is chosen for the veloc-
ity distribution through the boundary layer and is combined with either
the VonK &rm&n momentum equation alone (reference 5) or with both the
Von K&& mcmentumeqzation tithe kinetic-energy equation (reference 4).
The result is the replacement of the Prandtl partial-differential equation
by one ordinsry differential.equation in the Pohlhausen method andby two
ordinary differential equations in the Wieghardt method. A solution of
the ordinary differential equation or equations provides the boundary-
layer velocity profiles along th} b~dy. These and other approximate
methods that ”useonly the Von Karman momentum equation, or the momentum
and kinetic-energy equations
boundary-layer eqqation.

Because the flow in the
leminar in cases encountered

together, do not satisfy exactly the Prandtl

buundsry leyer is more often turbulent than
in engineering, the probl= of calculating

.the separation point is of even more”importance for turbulent than for
kminar boundary l~eH3. Itispite of the importance of the problem,
however, less pro~ess has been made in the development of methods for
the calculation of the behavior of turbulent boundsxy leyers than for
leminar boundary layers. The lack of progress stems from the absence.of
an explicit independent equxtion for t@ sheqring stress that is accurate
enough to lead to a description of the flow when used with the Prandtl
eqmtion.
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The main attempts to obtain methods for the calculation of the
behavior of the incompressible turbulent boundary layer in the presence
of pressure gradients are those of references 6 to 12. The results of
these attempts are unsatisfactory either because the assumptions upon
which they rest are incorrect or because the equations used to make cal-
culations were not derived from the bouddary-lsyer equations.

The analysis of reference 6 is based on the assumption that the
veloci~ profile is a single-valued function of the ratio of the pressure
gradient to the skin friction, an assumption shown to be incorrectly
later investigators “(forexample,”see reference 12).. In the analyses of
references 7, 10, 11, and 12 the momentm equation is used, together with
an auxiliary equation, to calculate the distribution of velocity profiles
over a surface. In each of these four methods the &udliary equation is
not derived from the boundary-layer equations but is empirical.

In reference 8, the equation that gives the variation of the mixing
length across a pipe (reference 3) was used to calculate the velocity
profiles. The’fact that the mixing-length distribution across the bound-
ary layer is not the same as across pipes is shown in references 13 to 15.

Reference 9 does not provide a method for the calculation of the
distribution of turbulent velocity profiles along a surface. It does,
however, suggest that separation of the turbulent boundary lsyer alwsys
occurs when the numerical value of the nondimensional pressure gradient
reaches an empirical constant.

The purpose of the present investigation is to begin with the
boundary-lsyer eqyation for incompressible flow and to proceed as closely
to a method for the,calculation of the behavior of the turbulent boundary
layer as the present knowledge of the turbulent boundary lsyer permits.

At first it might appear that the use of empirical auxilisry eqya-
tions in methods for the calculation of the behavior of turbulent bound-
ary layers can be avoided by developing a method sW,l% to the Pohlhausen
method which requires the solution of only the Von Ksrman momentum equa-
tion. For turbulent flow, however, in contrast with lsminar flow, the
conditions on the behavior of the velocity profile at the surface that
can be obtained frcunthe boundary-layer equation seem to be of little or
no use for the determination of the shape of the velocity profile across
the boundary layer. This difference between lsminar and turbulent flow
makes inapplicable the Pohlhausen process in which a type of function is
chosen to represent the velocity profiles, the function for the velocity
profiles is conibinedwith the Von K&m& momentum equation, and the
resulting ordinary differential equation for the space rate of change of
the profile shape parsmeter is solved.
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- An auxiliary eqyation for the calculation of the behavior of the
turbulent boundary lsyer can, however, be obtained from the boundary-
layer equation by making use of the experimentally verifiable fact
(references 7, 10, 11, 14, and 15) that ellveloci~ profiles of the

2158

turbulent bo~~ l&r form essentially a single-parsmeterfsmily of
curves. In the present analysis the Loitsianskii egpation (reference 16)
is generalized by multiplying the Prsndtl boundary-layer equation not
only by an arbitrary power of the velocity in the boundary lsyer but also
by an srbitrsry power of the distance from the surface. The resulting
eqyation is then integrated across the boundary layer and provides a
general integral form of the boundery-l~er equation, valid for either
lsminar or turbulent flow. This general integral”form of the boundsry-
layer eqution reduces to the Loitsianskii equrtion when the distance
from the surface is raised to the zeroeth power, to the Von K&rm6n momen-
tum e~tion when both the distance fimm the surface and the velocity are
raised to the zeroeth power, and to the kinetic-energy equation when the
distance from the surface is raised to the zeroeth power and the velocity
is raised to the first power.

Whenuse is made of the assumption of a single-psrameterfamily of
veloci~ profiles, the general integral form of the boundary-layer eqpa-
tion”becomes a general eqyation for the rate of change along the surface
of the velocity-profile shape parameter. This eqpationcfor the rate of
change of the velocity-profile shape parameter is the desired auxiliary
equation.

The assumption of the single-parameterfamily of velocity profiles
changes the problem from one of finding a solution of a partia>-
differential equation, the Prandtl boundary-layer equation, to one of
finding a solution of.two simultaneous ordinary differential equations,
the equation for the rate of change of the shape parsmeter and the
Von K&m& momentum eqyation. The differential equation for the ra~e of
change of the shape parsmeter, however, cannot result in a solution of
the problem in the present analysis because a lmowledge of the shearing
stress is lacking. In the present anslysis various assumptions sre made
for the distribution of shearing stress +hrough the boundsry layer, and
the distribution of the shape parameter over the surface of an airfoil
is then calculated. Because of the arbitrary assumptions for the shear
distribution and the use of a flat-plate skin-friction formula, precise
agreement between the calculated and experimentally obtained distributions
of the shape psrsmeter is not obtained.

‘Theproblem of finding the sheering stress in the turbulen~boundsry
layer remains. It is believed, however, that if suitable approximations
are.found for the shear end surface friction, the equations presented
herein should enable the development of the turbulent boundary lsyer to
be calculated with an accuracy sufficient for engineering purposes.
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The present work was begun while Dr. Lin was temporarily at the
Langley Laboratory and was continued by correspondence.

A

a,b,c

f=:

13T.5

.
q

%?

.

H=:

%

SYMBOLS

arbitrary positive integer

coefficients in polynomial

.
e~onent in expression for

reference chord

functional notation

●

.

in shear polynomial

.
shear

derivative of she& polynmial for X = O

coefficient of X in expression for ~

a{
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J
1 H-1

coefficients in polynomial for [~ $ ~g

o
.

K ratio of kinetic-energy thickness to momentum thickness

k function of H
(-(H~l)K)

II= -_&I f(. - +-l),%

M= .-&J%+-P+qdy

.

m eqonent of u in derivation of general equation

n

P

P

exponent of y ●in derivation of general egyation

k
coefficient of 0 in eqyation for e —

dx

~onent in equation for Pomr profiles, f = Lp .

static pressure
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s

u

u

v

V() .

x

.

Y

radius of body Or

coefficient of @

velocity parallel
boundary layer

velocity parallel

revolution

in eqyation for

to surface and at

eaH
G

outer edge of

to surface and inside boundary layer,
positive in direction of positive x

- velocity perpen&ular to surface and inside boundary
layer, positive in direction of positive y

valueofvaty=O

coordinate mallel to surface, positive in direction
from leading to trailing edge

coordinate perpendicular to surface, positive outward
from surface

smallest value of y for which the difference U - u is
negligible

displacement thickness
(J’(1-f)~)

momentum thickness (J’ f(l-f)i$
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P

.

P density

T shearing stress

To surface shesxing stress
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, ANALYSIS

Derivation of General Equation

The general equation is derived for the body of revolution because
the eqpation for two-dimensional flow canbe obtained’from this equation
by letting the radius of a transverse section of the body of revolution
become infinite.

The boundary-layer equation of motion for the body of revolution,
also valid for two-dimensional flow, from reference 3 is

(1)
●

—-. ——- . .— ..— . .__— ... ..—.— ————— - . .-— — - ——..—..—
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0

After multiplying through by ~, maldng use of the ,equationof conti-
nuiw that is valid in the boundsry layer of a body of revolution
(reference 3)

and noting that
.

au dpl . ‘pu— =-—
dxdx

equation (1) becomes

( )

U?%u+av+udro + u all~l+ v aum+l—— .— —— —— =
m+l~ & ro~ m+l ax m+l~

(2)

After eqpation (2) is written in a form in which each term vanishes at
the outer edge-of the boundary layer, each term of the eqzation is multi-

pliedby Yn and integated from Y R O to y = b. The result (see
appendix A for detailed development) is

(ti-xiq’)+(n+l)N~+8~ #~[N(m+2) -n(J:M) -L(m+l)l +
dx ,

Equation (3) is the general inte~al form of the boundary-layer

(3)

equation.
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The-Von K&&n momentum equation is obtained fhom e&ation (3) by
lettingm=O and n= O; the egyation for kinetic energy is obtained
by letting m=l and n= 0, and the equation for moment of momentum

.

is obtained by letting m = O and n = 1. .

.,
In the case m = n =.0,

1

J
5

I?e= (1- f) fay=e
o

Also,

or

N=l

J
5-

Le= (f - l)ay = -w
o

.“

or

L=-~=-H
0

It can be easily verified that all.the integrals, except Q, involved in
equation (3) have finite integrands as n approaches O. The limit nQ,
hOl?eV&, awoaches lllli~as n appiQaches Oj thus

The first tezzudrops out .if n ~ O. Then, by taking the limit n + O,
the result is

lim nQ# = 1
n+O

Hence, when m = n = 0, equation (3) becomes

.

(4)

---- .. .. . . . . . .. . ---— .—— —- ---- .- ———..—-
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Equation (4) is.the momentum equation for flow over a body of revolution
with flow through the surface. For two-dimensional flow, eqyation (4)
becomes

(5) .

When the value
the result is

of ~ from eqyation (4) is substituted into egyation (3),
dx

.

{

+&~m(N-L)-
}

n~J-M)+ N(H+2fl -L-NH -
Udx

‘o-—
PU2

.

(6)

where

-r

The assumptions contained in eq.wtion (6) are the usual boundary-lsyer ‘
assumptions. Equation (6) is valid for both lsminer and turbulent flow.

Form of Equation (6) for Single-ParameterFamily

of Velocity Profiles

Equation (6) is now to be placed in a
profiles form a single-paremeterfemily of
this purpose the term 11 of e~tion (6)
manner:

By definition, —

form valid when the velocity
curves (f =f(q,H)). For
is modified in the following

,
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Because f depends O* on q and H,

ii)(l- f) a(l-f)~+a(l-f)g=—
ax h ~X aH” dX

From the definition of q

then

- or, after an integration by parts of ths first term on the right-hand
side, the result is

n+l then beccnnmThe ~ession for Ile

.

..— -——. .—— ---- .——. — .--— —.. .—— ——-——. — - - - -— .— ---- —.—. —-
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.

But
.

Then with

the expression for 11 can be written as
.

11 = *~(-M+N+J)-1~
ax

13

When the expression for 11 from eqyation (7) is substituted into equa-

W is used, the following egpation istion (6) and eqyation (4) for ~

obtained: ,

●L
[

/9
n(J-M)-N-(m+l)

r 1
fin$dq +

Ft? o

$[.(. - M) 1-N+.Q (8)

.

0
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an dNdHwhere — = — — has been used. Equation (8) for e ~ is applicable
ax mdx dx

both to two-dimensional flow and to flow over a body of revolution.

In equation (8) all the integrals, except the one involving the
shear ratio g, sre functions of H, m, and n only. For the present
no restrictive assumptions regsrding the shesr are made. The form of
the kinetic-energy e@ation for a single-parsmeterfsmily of velocity
profiles is ob~ed from e~tion (8) by placing m = 1 and n = O
and dividingby N’(H) =K’(H). Thus,

The synibol K represents the ratio of the kinetic-energy thickness

J

b
(1- f2)fdy tothe momentum thickness. Note that in the derivation

o
of equation (9) from eqyation (8), the assa~ion of a si~e-p=ter

V.
family of curves is not restricted to the case — = O.

u.

.

.

Restriction of General Eqpation to Power Profiles

. The data in figure 1 show that the power profiles definedby f = ~P

are a good approximation to the “standard” profiles derived by fairing
experimental data (reference 10). Equation (8) canbe further developed
by using the assumption that f = (P. After some fairly lengt~ calcula-
tions (see appendix B), equation (8) becomes.

e _=-4p(p +l)(2p+ l)Cp(m+2)+n+iJ~dU+m
dx pm+n+l

~+n . {~+1)+~(m+2)~~+ ~~z~W+n~d]>+
2Pll(m+2)+n+~

2P(P + l)[p(m + 2) + n + l] ~ (lo)
p(m+l)+n .

.5

—... .. — ——-—
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AB a

when

first approximation the assumption has been made that f = Cp even

++0.

The occurrence of the arbi~ary positive integers m and n in
‘equations (8) end (10) recp.dresan explanation. Id order to determine
why m and n appear, egyation (8) is written in a different form.. ~
making use of the definitions for N, I, J, M, L, and Q and inte-
gratingby parts where necessary in order-to eliminate terms that con-

tain qn-l, the result is

-n(H+l)(J-M) +N(H -m) +L(m>l) =

(m+ ’’L’’e’*[’+’) iJ’fd~+f2-g ‘q
.

1’
8/e -

-n(J-M)-N-(m+l) ~n$dq.
o

and
.

.

.

. -.—— —.—... . ... . .. ...———
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I Equation (8) then becomes

i

I
1“

By using the assumption of a sl~e-pareme’ter family of curves directly In the partlal-
differential equation (l), the following ordinary differential equation iB obtalndl:

i

!&

dx

(12)

I
. The concept OI? a single-parameter femlly of velocity profiles Is consistent with equation (1)

and with particular functions for TfJplJ2, g, and f. when the right-hand aide of e~tlon (12)

I is independent of V. When the righGani side
hand side of eqpatlon (11) is lndep3ndent of m
identical.

dH
To obtain an equation for .9~ that does!

of equation (12) is Mk&dent of q, the right-
and n. Equationa (11) and (12) are then

not contein either m or n cm both, the
.

functions To/N’j & ~ f must thereforebe suchthatthe right-hand side of equation (U) =

/ dH
.5

Is independent of q; the solution of the eqyation for e -~ then provides a solution of equa-
>

=/
tion (l). Note that the problem Is to find a solution not of equation (1) alone but of w

I u

.’

.

.
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equation (1) and the independent relation for the shearing stress in
turbulent boundary layers; this relation is at present unknown.

The nature of the approximation made in the present analysis, in
al

order to obtain a specific equation for ~~ may be clarified by noting

that a specific equation for
m~ is obtained from equation (8) by choosing

the functions To/PU2j g, and f and substituting an arbitrsry positive

integer for m and em arbitrary positive integer for n. The calculated
distribution of H over a body for arbitrarily chosen functions for

To/Pu% g, and f is then consistent with the momentum equation and one
a.Hof the integral eqpations for —. For-le, ifm=l and n=O,
dx

both the monkntum and the kinetic-energy eqpat.ionsare satisfied but no
“ other ones. If m =0 and n= 1, only the momentum and the moment of
momentum equations are satisfied. In the present analysis only the
momentum, the kinetic-energy, and the moment of momentum eqyations -
equations which have fsmiliar physical meaning - are used.

As noted previously, equation (l-l)is independent of m and n if

the functions To/PU2j g, and f are such that the right-hand side of

equation (12) is independent of q. In this case a solution of equa-

tion (1) results and the fuuctions ‘0/PK~ g, and $ and the calculated
distribution of H satisfy every particular eqyation obtaixuiblefrom
e~tion (11), (10), or (8) by assigning positive integers to m and n.

Note that m and n cannot both be made zero in equation (8)

because g+nI =0 for m=n=O. If m ~d.n sre both zero,
u-u

equation (8) becomes O
sre valid both for flow
flow.

For m = landn
kinetic energy

o ~= -H(H- l)(31i-
ax

= o. It is also noted that equations (8) md (?.!))
over a body of revolution and for two-~nsional

= O, eqyation (10) leads to the eqpation for
●

(H + 1)(3H - 1) ‘O

4 Y
(13)

—.. .— ----- —.----- .— -
.
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where the relation for power profiles 2p + 1 = H has been introduced.
This form of the energy egpation can also be obtained from equation (9)
by noting that, from the definition of
profiles,

K= 2(2p + 1) =

3p+l

K and the egyation for power

k
3H-1

A comparison of the values of K obtained from this formula and bbtained
from the standard profiles is given in figure 2.

The eqyation of moment of momentum for power profiles is obtained
from eqpation (10) by letting m = O and n = 1; it is

\ ~dH=

[ ~ Jc:]:+

-H(H+l)( &l)edU+ (~-l) H+(H+l)

ax 2 Gz

,,

.

(H2 - ~)~ ‘ ‘ (14)

In this eqyation the term involving the shear distribution may be
rewritten as follows: .

It then involves the mean shear inside the boundsry lsyer.

Attempts to Derive a Relation Governing the Change of
.

the Form Psrsmeter

In most of the recent analyses of the development of a turbulent
boundary lsyer, an emptricsl relation governing the change of the form
parameter H is ususlly introduced. It is clear that equation (10)
automatically furnishes such relations if the shear distribution is known.
In this section, three attempts sre described to establish such a relation.
These attempts sre based on the following simple assumptions for the shear
distribution:

.

. . — ------ - -. --— .
.’,
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~ dpl
(a) The shear distribution depends only on ~% ~, which is eqpal”

to the Pohlhausen psrsmeter multiplied by a factor (reference 3)

(b) The

(c) The
the velocity

shear is constant across the boundary layer

shear distribution depends only on the form psrameter of
distribution

The first two assumptions are used either with the energy equation
in the forms givenby eqpations (9) and (13) or with eqyation (14) for
the moment of momentum. The last assumption is used with equations (13)
and (14) jointly.

(a) Shear distribution depending only on the Pohlhausen parsmeter.-
The first assumption follows the original ideaof the method of Von K&rm6n
and Pohlhausen in using polynomial approximations together with the boumi-
my conditions obtainedby successive differentiation of the eqyations of
motion (reference 3). Fediaevsky (reference 8) appears to have been the
first to introduce it into the investigation of turbulent boundary layers.
When the sheer stress through the turbulent boundary lsyer is assumed to

be a polynomial of fifth degree in ( = ~ satisfying the following bound-

ary conditions:.,
.

aty=O

,
T = To,

T = 0,
w

the following expression is obtained:

-(1 - c)s~g-
The shear distribution g is

.

k=~
‘o

+ (3+X){+3(2+@

a function of

dpl 8dUb—=- -—-
dx Udxe

.
.

~ and A, where

pup

‘o

(15)

. . . . .... _ ..______ ____ —.— .-.— . .. . . . ____ —— —— .—. —.— .
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The particular boundary conditions at y = O restrict this development
Vo

to the case — = O.
u

From the shew distribution (eqmtion (15)) the calculation msy be
made of the coefficients P and S. The attempt to calculate P and S
by using the standard profiles together with egpations (9) and (15) was,
however, unsuccessful for two reasons. First, the ratio 5/0, which must
be known, could not be accurately determined from the standard profiles.
Second, for reasable valws of b/tl,the calculated values of P were “
positive for values of H for which P shouldbe negative.

The calculation of the part of P independent of the shesr profile
was then made both for the standard profiles and the power profiles by
making use of the kinetic-energy eqyations (equations (9) and (13),
respectively); the comparison is shown in fi~e 3. The closeness of the
results suggests that it is permissible to use power profiles as an
approximation for calculating P and S. From equations (13) and (15)j

and

The
are

P=
[

-H(3H-l)H-l-
96(3H - 1)

(H + 5)(H + 7)(H + 9J
.

[

S=(3H-l)H-
2W(3H - 1)

1(H + 5)(H + 7)(H + 9)

functions P and S, given by equations (16) and (17),
shown in figure 4.

The fact that the egqation

~ -a—= RD+sff#
dx

(16)

(17)

respectively,

.

where P and S sre obtained from eqyations (16) and (17), respectively,
does not predict the behavior of the turbulent buundary layer is shown as-

follows: Let o = O; then, for H greater than approximately 1.5, ~

should be negative. Because S from equation (17) is positive for

H >1.2, it follows that “~~ is”positive. This conclusion is incorrect;

.

.

._ ———. -—- - . —--- —-.-— ...--— — —.— ..— ——- ---. — -—-- -—-. ..—. - — - -—- ---
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therefore, the function for S (equation (17)) is inconsistent with the
known behavior of turbulent boundary layers.

To show that the function for P (equation (16)) is inconsistent
with the known behavior of turbulent boundsry layers, let H *1.4. By.

w becomes positive and large becausemaking ‘~
ax

positive and isrge, ~

P given by equation (1.6) is positive. For positive values of g, how-

ever, it is lumwn that ~ should be negative. The function for P

(equation (16)) is therefore inconsistent with the known behavior of
turbulent boundary layers.

In order to determine whether functions for P and S that do not
result in obviously incorrect conclusions can be obtained-by making the
shear polynomial satisfy a greater number of boundary conditions at the
outer edge of the boundary lsyer, the shear polynomial is generalized by
writing

.

[ 1
A(A+ 142 + M(I - tJA(l + A()g=(l-t)Al+A(+ z (18)

!l! heboundaryconditions at the surfac~ that are satisfiedby equation (18)
are

At y = b, the conditions that are satisfied are

13=o

. . . .. .

*-+3 .-j
aP-1

. . . . . . . .— .— ---- —-— - —- —.—- .—--—.— —-..— — ..— —— — ..——_ .-----
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,

In order to evaluate the integral
I

1 ~p~d~ in equation (13), the
o ac

.

~ i* writteIlas

‘em a~

where /

131= g) [ 1(l-OA~+A(A+l)~ -A(1- ‘-11+A~+A~~2

and, for A ~ 1, . .

~=(1- C)A(1 + 2A() - Q(l + A!)(I - ~)A-l

By using the e~ression

s =
{

2(3P + 1)2 a~l -
3p+l

for gl, the e~tion ob~ined fOr S is #

A:P

[

1“
-+

(A+ P)(A+P- l)(A+P-2). .0 (P+ 1) P
.

. A + A(A + l)(p + 1)

A+l+P 1} ‘2(A+2+p)(A+l+p)

By using

P=

the e~ression. for g2 the equation for P is found to be

{

-2(2P + l)(3p + 1)2 a -3p+l

A:(P + 1)

[

1+

(A+ P)(A+P- l)(A+P-2)00’6 (P-+ l) A+l+P

A(P + 1)

1}(A+2+P)(A+1+P)

09)

—--- . . . . . -.-. — ---—. -—. ------
. .
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To avoid positive values for S obtained frcunequation (19) for H< 3,
it is found that A must be 1 in the ~ession for gl. It is also
found that to avoid positive values for P in equation (2o) for H >0)
A mustbe ~ in the expressionfor ~. The values foy S and P
then beccme

~ = (3H - 1)(H - 1)(H - 3)
H+5

(21)

P= -H(H - 1)(3H - 1) . (22)

The expression for P (equation (22)) is the same as the coefficient of
e dU in equation (13); letting A+ ~ makes the coefficient of 2. in
Ez o
equation (18) become zero. The shear profile then contributes nothing

to the coefficient of $% in equation (13).

Equations (21) and (22) for S and P, respectively, were tested
by making a computation of H and 9 for the pressure.distribution

given in table I of reference 10. The computation began at ~ = 0.075

with the values given in table I of reference 10. The equations used are

edH=
dx

-H(H - 1)(3H-- 1)0+

and

de=
dx

-(H +

(3H - 1)(H - 1)(H - 3) ~
H+5

The equation for
de

is the VonK
&

&m&l momentum equation. The equation

for @ was obtained from reference 17 and is

@
= 0.006535

&6

The calculated distribution of. H along x was far from the experimental
curve.

In an attempt to reduce the sensitivity of the equation for e~

to the sheer distribution, the moment of momentum equation (e~tion~lk)),

, .-

-.....—- .—. -—..— ——— -— . . ..— — — -. —..—- —— .— . . . .
,.
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in which the shesr appears in the coefficient of @ only as a mean
value, is used. When the generalized expression (equation (18)) is used
for the shear distribution g the result obtained is

●

✻

~ dH= -H(H - l)(H +1)2+ 3H(H + 1)3
ax (~

(H2-’i-3f:i~2)A+ 3”: ’23)

where ~ = O as requiredby equation (18). TO keep the coefficient of m
negative for all positive values of H, A must equal OJ in the coeffi-
cient of m. The shear distribution is then independent of the pressure
gradient. To make the coefficient of @ negative for values of H
near 3, A must have the smallest value that it can take; therefore,
let A = 1 in the coefficient of @. ‘Equtiop (23) then becomes

A calculation for the example in table I of reference 10 with eqya-
tion (24) resulted in a computed curve for H that was fsr from the
experimental curve.

(24)

(b) Assumption of constant shear across the boundary layer.- All the
computations of H have led to values of H much larger than the experi-
mental values. Ther@fore, in order to reduce the calculated values of H
it is necessary to increase S. In order to increase S, the assumption
of constant shear across the boundary layer is made. For constant shear
it canbe shown that

by letting g = (1 - C)B and
B~O. Equation (14), sfter
duced, becomes

taking the limit of the integral as
the assumption of constint shear is intro-

p -H(H + 1)(H2 - 1) - (H2 - 1)~ + (H2 - 1)*—=
dx 2

●

✎

- —.—.— . . . .. —-—- .. — -— .-.-—- . —.—— --- .— -- .-..
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dH’Inorder to make —=0 at H= 1.286 for
dU

dx
— = O, the coefficient -
dx

of @ was arbitr~ily changed to * - 1.28~. The equation then
becomes o

e!?l!. -H(H+1)(H2 - 1),0- (H2 - la653)@+ (H2 - 1)* -

dx 2

This equation was used for the computation of H with W = O, and the
results for the exsmple given in table I of reference 10 are shown in
figure 5.

The assumption of constant shear across the boundsry lsyer was also
conibinedwith the kinetic-energy equation. When the power profiles and
the assumption of constant shear are used in equation (13), the kinetic-
energy equation becomes

The function -H(H - 1)(3H - 1) is shown in figure 3 and the function

-(H - 1)(3H - 1), in fi~e 6. When the standard profiles are mibstituted
2

for the power profiles and the assumption of constant shesr is made, the
kinetic-energy eqpation (equation (9)) becomes

e

where the function

K-=2 is shown in
K’

dH=K(H-l)u K-2P K-l V-—- —
dx K’ K’ K’

K(H - 1) is shown in figure 3 and the function
K’

figure 6. The results o-fthese calculations of H

(with $ = O) sre shown in figure 7. In this case, the use of power
profiles makes the result somewhat different from that obtainedby using
the standard profiles.

(c) Det~nation g~on~ by the simultaneous use of the ener~ and
moment of momentum equa .- It seems obvious that, if equations (13
and (14) were exact, the coefficients of u, ~, and v h equation

. —. -—. — ---- —. —.._. _ —.-—. —.. ——
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would be equal to the coefficients of m, ~, and v in equation (lk).
‘ The ratio of tJlecoefficients of u is

-H(H + 1)(* -10

2 =(H +1)2 .

-H(H - 1)(3H - 1) 2(3H - 1)

The curve of
(H +1)2 ~

2(3H - 1)
s given in figure 8 and is seen to be close to

unity.

The ratio of the coefficients of ~ is

4(H2 - 1) : 4(H - 1)

(H + 1)(3H - 1) 3H-1

The curve of
4(H - 1)

is also given in fi~e 8.
3H*1

from unity for small vslues of H but become equal

Equating the coefficients of @ results in

!

The values are far

to unity for H = 3. #

,“ .

or

Now let

.

.

—. .-—— .. — —.— -—.. . -- -. -. -- . ... . ——..— - .. . ...- .
. . .

A
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When the shear distribution is assumed to depend only on H, l%e integrals
in equation (26) are functions of H alone. Because equation (26) is
then an identity, the coefficients of the various powers of H canbe
eqyated to zero. The resulting eqyations are:

For HO

30-a--=
2

for H1

-a -b+3j-;=O

for H2

9j+3q-z=3
ba-- c--

2

for H3

a+ b-c -;q+3z=-l

for H4

for H5

‘9b+c-ZZ=O

c = o

The results obtained are:

a
28=—
128

180
b=-—

128

c = “o

.

-. .—- .- —.. . -.— ..—._ — —... _ ..._.._ — . .. ——-— _ _____ ._ .
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q
= 32

-GE
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.

z 40
= -in

Therefore,

J’1 agdL=7-45H
OC ac 32

Eqyation (14), the moment of momentum e~tion, becomes

~ ~ = -H(H? - 1A(H + 1),0- (H-l) (3H-l)(7+ 22H+l~2)@+
dx 32 .

and equation (13), the energy equation, becomes

e dH=-=(=- ~)(~ - ~lm- (H-1) (3H-1)(7+ 22H+15H2)@+
dx f

(H + 1)(3H - l)T

4
(28)

The variation of H with x for the initial values and the pressure
distribution given in table I of reference 10 was computed by using a

modified form of eqpation (28).- In order that ~ = O atval.ues of H

in agreement with
equation (28) was

IJAL

experiment when m = O, the coefficient of @ in
replaced by

(H - HO)(3H - ~) (7 +“2=” + l-)

,

.

—.. ~ . . -—-——- .. . . . . —.——...— .- —.. ---- .—. -. . . -.. _ ---- . ..___ . .
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where

Ho = Ho(Re)

The variation of ~ with Rg was calculated from the eqpation

8

29

.

Wlo Ho = 0.5990 - 0.1980 loglo Re -
‘“oi’’Pglo ‘e)2

which was derived to represent a f~red curve through the experimental
data (see fig. 9); the data were obtsined from reference 13 and from
British results that are not generally available. The result of a compu-
tation of H for ~ = O and with equation (28) modtiied as follows

I@=-@H-l)(3H - l)u)- (H - Ho)(3H-%)(7 + 22H+ U@d .
dx 32

(H + 1)(3H - l)V

4

is given in figure 10..
.

Assumptions (b) and (c) lead to somewhat better results than assump-
tion (a) although they are still not as satisfactory as those obtained
from the purely empirical relations introduced in references 10 and 12.
It is clear that this difference is caused partlyby the inaccuracy of the
simple assumptions about the shesr distribution and can be improved by
using better descriptions. However, in view of the limited present know-
ledge of the shear distribution, it does not seem worth while to make
more complicated assumptions.

It may be noted that the final equations obtained for the change of
the form psrsmeter by the three assumptions sre all of the form

where m =~~ and $$=

different form is used in

.

,

‘o—. This form
pua
reference 10.

is used in reference 12, but a

-—-...— --—--—— —-. .... ——-———-——--——..——.. -.— .-— . .
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Investigation of Energy E&tion

Since none of the three assumptions for the shesr distribution,

results in.a dependable equation for ~
ax

, an investigation is made to

determine whether a result common to the three assumptions, namely that

the coeffj.cientof To/pU2 in the eqyations fOr- ~ is a fUnCtiOn Of

H alone, is very far fiomtrue by using experhental data and the
kinetic-energy equstion without sny assumption for the shear.

If no assumptions other than the boundary-lsyer assumptions are
tie w if in equation (6) n= o and m= I-,the restit is

( )t3~=-@K+2~5’ef$dq +o(H - l)K + W(1 - K) (30)
o

If the assumption of a single-parsmeterfamily of curves is made
(f = f(q,H)), then K = K(H), and equation (30) becomes

or, for V = O,

where

K’

-(H - l)K
k(H) = ~,

H-1+u.)— K+~l~K
K’ K’

+ Eo) (31)

\

.
.

,
*

.

1,

.

— -. —- ____ ._ —.._.-_. .— .—— - --.. .. . ..——.
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Iflthe assumptions made that g = g(qjH)j then f = f(g,H) and”

J
f dg is a function of H only. Therefore, go = ~o(H). Equation (31)

o
then beccmes

(32)

. 1
In order to obtain an estimate of the quautity “1- ~

JK.
f dg under

the assumption that f = f(g,H), reference 12 is used. Equation (7) of
reference 12 may be written as

where

Note that Garner’s equation

#

kl(H) = e5(H-1~4) .

(33)

(eWtion (33)) has the form the kinetic-
energy equation take~ when tk-assumptio~”t hat f = f(q,H) and that
= g(~jH) are used in the-kinetic-energy equation. The kinetic-energy

$uation (equation (31)) CaKI dso be placed in the form of equation (32)

when the more general assumption that g =. ~ Fo(q,H) + FI(q,H) iS made

for the shear distribution. For the purpose of obtaining

J1
the value of 1 -~

KO
f dg, the quanti~ E +~o(H) in

is assumed to be identical with the quantim g - 2.065(H
equation (33). Then

~o(H) = -2.065(H - 1.4)

and for H = 1.5, for example,

~o(H) = -0.2065

therefore,

an estimate of

equation (32)

- 1.4) in

.

... . -— .-——-.-...— -——=— —. —.—. .———. -.—.—
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12.- 1 fdg= -0.1032
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.

Therefore 1 - ~
f

f dg is the difference between two gpantities, each
K.

of which is much larger than their difference. It follows that, in order
to determine ~o(H) for values of H not close to separation with any

accuracy, f snd g must be known with relatively gocd accuracy.

It may be noted that the moment of
to g. This sensitivity canbe seenby
e~tion (14) as

momentum eqpation is also sensitive
writing the coefficient of @ in

~ (-&@)-](H2-l)(H+l)l

1- -1

‘rJ-
When it is noted that the integral I g d~- is of the order of unity

of

all

do

that H lies between 1.2 smd 2.6, the sensitivity of the coefficient
@ to g becomes clear.

In an attapt to determine whether go is determined mainlyby H,

the data that were used in reference 10 were used to compute En by
making use of eqyation (32) in the form

~g .
E.(H) = ~ - ~–u- .

The surface-frictioncoefficient
(from reference 17)

@k(H)

# was calculated by the formula

0.006535
@6

and k(H) was calculated by the expression
momentum equation

obtained from the moment of

k(H) =H(~ - l;(H+l)

The values of ~ plotted against H are given in figure I.I..The effort
to determine whether ~. is a function mainly of H is inconclusive.

.

.

.

,
—— —--- — — —-- --—--- .. ——- -.— -— -— --- —.—— — ---- ---— .-— . .. .. ..
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At least part

33.

of the scatter occurs because %rldg
dx

were obtained

from curves ,fairedthrough experimental points. In addition, the cal-
*d&

culation of ~. requires the subtraction of ~ from —, an opera-
@k&)

tion which further decreases the accuracy of the calculated Values of go. .

DISCUSSION

Although eqwtion (6) is valid

tions are valid, the equations for

assumptions are made do not lead to
first of the additional assumptions

whenever the boundsry-lsyer assump-

~ that result after additional

good agreement with experiment. The
made is that all velocie profiles

of the turbulent boundary layer belong to a single-psrsmeter-f-&ily of
curves. The eqerimental data of references 7, 10, 11, 14, and 15
substantiate this assumption.

The second assumption is that the single-parameter family of curves
can be approximated by power profiles. The data in figure 1, in which
velocity profiles are compared, and also the data in figures 2 and 3, in
which K and P sre compared, show this assumption to be good, at least
for H<l.8.

From the data in figures 1 to 3, it is inferred that power profiles
canbe substituted for the standard velociw profiles without greatly
affecting the calculated distrilmtion of H against x for H <1.8.
To test this inference, the kinetic-energy equation was used with the
assumption of constant shear across the boundary layer; the result is
shown in figure 7. As expected from the data of figures 1 to 3, the
effect of the mibstitution of power profiles for the standard profiles
is noticeable only for H >1.8. It thus appesrs that the inaccuracy of

the equations for ~ that were tested is caused mainlyby the surface-
dx

friction law that was used and by the assumed shear distributions rather
thanby the use of the power profiles.

. The data of-references 12 and 15 show skin frictions that increase
strongly in the region upstresm of the separation point before dropping
to zero.at the separation point. On the other hand, the skin-friction
data presented in reference 14 indicate that the skin friction fslls
monotonically to zero as the separation point is reached. In the present
analysis a skin-friction law obtained from experiments on flat plates is
used. It is therefore probable that psrt of the inaccuracy in the

.

.—.- --—
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equations used to calculate H is caused by the use of a relation for
the skin friction that does not give correct values when there are
pressure gradients along the surface.

The assumptions for the shear distribution that were made to obtain
&a specific e~tion for ~ were

(a) The shesr distribution depends only on the ratio of the pressure
5% or ~~

gradient to the skin friction — —
To dx -F ~

‘(b) The

“ (c) The
the veloci~

shear is constant across the boundary lsyer ‘

shear distribution depends only on the form parsmeter of
distribution ( . -

of these simple assumptions is derived from a knowledge ofBecause none
the details of the turbulent flow, it is not likely that any of them are
valid. When it is recslled that the coefficient of @ in both the
kinetic-energy and the moment of momentum equations is sensitive to the’
qhesr distribution, it is not surprising that a reliable equation for

~ was not found.
dx

In order to obtain a reliable equation for ~ from eqyation (8)

it thus seems necessary to calculate the surface shesr and the shesr
distribution across the boundary lsyer more accurately than in the
present analysis. Efforts should therefore be made to understand the
mechanics of turbulent shear flow sufficiently well to provide an inde- .
pendent relation for the shearing stress that will predict the behavior
of turbulent boundary layers when used with the l?randtlboundary-layer
eqyation (equation (l)).

CONCLUDING REMARKS

A genersl inte~al form of the boundary=layer eqy.ationis derived
from the Prandtl partial-differentialboun~-l~er e~tion. The
general .inte~al equation, valid for either,lami~ or turbulent incom-
pressible boundary-leyer flow, contains the Von _ momenh eqpation,
the IsLnetic-energyequation, and the Loitsimstii ewtion as sPeci~
cases.

.

.—— —-- - ——— — - - ——. ---- -- ———. —— -.
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In an attapt to obtain a practical method for the calculation of
the development of the turbulent boundary layer, use is made of the
e~erimental finding that all the ,veloci~ profiles of the turbulent
boun&ry lsyer form essentially a single-psrsmeter family. The general
equation is thereby changed to a simpler one from which an eqpation for
the space rate of change of the shape parameter of the turbulent boundary
layer canbe obtained.

The resulting equation for the space rate of change of the velocity-
profile parameter is restrictedly the assumption that the velocity
profiles of the turbulent boundery layer canbe approximatedby pwer
profiles. Two of the resulting equations are used to calculate the dis-
tribution of the profile shape parsmeter over an airfoil for one e~eri-
mentslly determined pressure distribution. Although different assumptions
were tried for the shesring stress across the”boundary layer, the cal-
culated distribution of the profile shape parsmeter did not agree exactly
with the e~erimental distribution.

An examination is made of the effect of using the experimentally
determined single-psmmeter family of velocity profiles instead of the
power profiles on certain functions that occur in the equation for the
space rate of change of the veloci~-profile parameter. One calculation
of the distribution of the profile shape psmmeter over an airfoil is
also made for the experimental& determined pressure distributionby
using the single-psmmeter fsmily of velocity profiles found from experi-
ment. A comparison of the results with those of a calculation made with
the same assumptions except for the use of power profiles shows some
difference near the separation point. It is believed, however, that the
apparent lack of reliability of the specific equations used to make the
calculations is caused mainly by the lack of precise lmowledge concerning
the surface shear and the distribution of the shearing stress across the
turbulent boundary lsyer. The present analysis emphasizes the need for
information concerning the shearing stresses in turbulent boundary lsyers.

Langley Aeronautical Laboratory ,

National Advisory Committee for Aeronautics
Langley Afi Force Base, Ta., May 22, ~950 “
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APPENDIXA
,

.

DETAILED DEVELOPMENT OF EQUATION (3)

Equation (2) can be written so that terms of the form @+l - &l
appear ~licitly; therefore, each term wi12 vanish at the outer edge of
the boundary layer. The resulting equation is

[(1 a Um+l-pl+lu——
m+lbx

)

1 avum+l+ 1-——
m+l & m+l

or, after simplification$

[(la@+l-——
m+l&

(u-l - Um+’)u

ro

aro 1 ~m+l *O
—+—- —=
ax m+l r. dx

(Al)

E~tion (A2) is now multiplied through by yn and integrated with
respect to y from y = O to Y = ~. ~ re~t- e~tion is

.

1 1 *O—— Jh“Yn@+l - ++1) u ~ au
T(

-= Oy%?%uw)ay=
m+lrodx 0

1 rU?3+YF()

.

.

.

_. ——. ——- ——— -.---———— -— - --–- --—— -—-— ‘- — ‘-
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or, after simplification and mibstitution of the formula for the
differentiation of a definite integral

T Yn
o

the following eqmtion results:

,

(A3)

~ integrationby parts,

and equation (A3) becomes

1-—
m+l

1

.+1

Jq~3n+2 5
ax

ynl-
0

@+2 &o
——

r[
Yn 1

r. ‘dx o

() ]Um+lu

f
p+

01Um+lu
--

u ~dy

The velocity v can be eliminated from the term

by the fo~owing development:

(Ah)

--.—- ..—. .—. .—— .—— — ___ ______ . —---.——--—.——_ ———
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The velocity v my be written as
.

NACA TN 2158

,

r av
v= —ay+vo

Ob

or, by use of the eqyation of continuiw,

#

J
Y&

v=- JlCII-OY
–d.Y— —— Udy+vo

oax rodXO

J‘axlkA~.y%+4.Eo ‘(u-u) d.y-K9y+vo=
o ax ax Irodx 0 r. dx

u -0——y+vo
r. aX

J’
yap -+)

v= u
o ax

ay+~~y(l-$xw~+:>)+

or,”after terms are collected and f is mibstituted for u/U, the
result is

.

,

.

— .— -- ———---- ..,—--- ~. ..- -... - -.
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J’7 ) J’?@+l - um+l ~n-1 ~ . @+l -
0 0

(%+:g)~(’-f)w-, +Voay1}

now be written as

{r

a(l - f)@+l) &l u —

o ax
ay,i-

or

Now let

[1~aY+l - -~ ~(1 - f)d.ydy = JGn+l
o

.

.

and

.

— ——-..—_ ..___ -—--. .. ———. — -———. —-— -- -.. —
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8
The term 1(

P+l . #+~ #-l dy now becomes

o

VOTP+%P

Now let

and

~’(f - P)yn w . ~n+l

Eqpation (Ah) can then be written as

1-—
( )

d_ ~+2Nen+l + ---1 ~+211en+1 +-
m+ldx

.

——_. —.. ..—.. — —.—. —. -_. _— -- .----— — ——.—.— -—— ---~--——- .— —--,..-
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After d_ &+2Nen+l is expanded and terms sre collected, eqpation (A5) .
ax

becomes

where

.
.

.

.
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APPENDIXB

SIMPLIFICATION OF TERMS IN EQJTATION

Calculation of ~
dH

The definition’of Nen+l is

(8) FOR POWER PROFIIES

+nI

Nenjl.J(. - P+l)* dy
. .

and

or

aN 6/e

J [i’—=- l-p+p-
IiHO

1

f(m+ l)~$qn dq
bH.

The definition of 18n+1 is

therefore,

.

——.—.— ..— —---- - .-. —.-—.- ._-. —. . . --- .—-..,,
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,

Then

n ~5’e,,-fm+~(~’$ d,),n-ld, (Bl,

By integration by parts,

(“(1 -@+$(fgd,),%i,=-..”ep-P+qg-

. When equation (B2) is substituted
e~tion is obtained:

=.

.

dq (,2)

into eqyation (Bl), the following “

Use is now made of the power-law assumption

Then

.

.

. . . ._.——_ -. ._ ..—— _ —- . . . .. .. —___ ___,_ ____ ——— .-. —-.— .
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“.

After a lengthy manipulation, ~ + nI is found t.obe

m m + 1 (p + l)n(2p + l)n(pm + n)
—+nI=——
dH 2

P [( 1
2

‘+1pm+2)+n+l

where use has been made of the following equation:

~= (p+l)(2p +1)

e P.

calculation of N

The definition of N9~1 is

5
Nen+ls J( 1- P+q fyn w

o.

When f = (p is used, the equation for N is

N= ()
~n+l p(m + 1)
T ~(m+2)+n+l](p+n+l)

or

.

N= (m + l)(p + l)n+1(2p + 1)=+1

1@~(m+2)+n+l(p+n+l)

Calculation of J

From the definition of J9=+1,

NACATN 2158 .

#

.

.,

.

.

.

.

.

.

.
.—..—.— —— --— —— -- ---- ------.-. — --- -
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.

.

.

When f = ~p~ the equatioq for J is

J= (;~+’~:b-P+’I(!-P+)*”-’., “

or,

J=

after a lengthy manipulation,

(p+ l)n(2p+ l)n+l(m +1)

{

(p+l+n) [~+n+2(p+l)] + p(m+l) +1 + n

Pn-1 “
}

(n+l)(p+l+ n)~(m+l)+m+iJ ~(m+l)+p+l+~

From the

When f = K%

From the

When f = (P,

Calculation of M

definition of Men+l
.

the e~tion

M=(m+l)

,

for M is

(p + l)n+l(2p + l)n+l

Pn(n+ l)[p(m

Calculation of

definition of

~n+l

+l)+n+iJ

L

= J( 1 - fro-l)@ ay
o

the equation for L is

L=(m-l) (p + l)n+l(2p + l)n+l

pn(p+n+l)(pm+n+l)

.

.

. .—. - ...= .._ --.—— _. . ..__ ___ - —- .—-. — ----- ___



I

I

I

I

I

I
‘1

I

Calculation of
N(H - m) - n(J - M)(H+l) + (m+l)L

g+nI

Frcau the expremione for J and M, the expression for J - M is
1

J - M - (P + l)n(~P + l)n+l(m + ~) (p+l+n)~ +n+2(p+l +k(m+l)+l+nl

N-l (n+l)(p +l+n)~(m +l)+n+l][p(m+ l)+p+l+n~ -
.

(m + 1)
(p + l)n+q2p + l)n+l

~(n+l)~(m+l)+n+~

After a lengthy dnplification, the result Is ‘

J-M.
-(m + 1)(P + l)n($?p+ l)n+l

‘&( P+l+n)~(m +l)+p+l+n]

or

-n(J - M) (H + 1) =
2n(m + 1)(P + l)n+1(2p + l)n+l

&(p+l+n)~(m +l)+p+l+~

where H = 2p + 1 was used. The expression obtained for N(H - m) + (m + l)L Is

N(H -
(m + l)(p + l)W1(2p + l)n+%p(pm + m + n)

m)+(m+l)L=
pWp+n+l)[p(m +2)+n+l](pn+n +1)

o

.

. “. .



.

.

and the expression obtained for N(H - m) - n(J - M)(H + 1) + (m + l)L is
E

N(H - m) - n(J - M)(H+l) + (m+l)L=
2(m+l)(p +l)n+1(2p +l)n+l~(gn+ n+ 1) + p(pn+rn+ n) ;

IXP+l+n) [P(m+2)+n+~(pm+n +1)
g

By substitution and slmplitlcatlon

I

N(H -m) - n(J - M)(H+l) + (m+l)L= -4p(p+ l)(2p + l)Ep(m +2) +n+j

i

I

!g+ Iit pm+n+l

It can also be shown that
/

6/e
-N+n(J -M)- (m+ 1)~ ~nfm

{
=~@m+2)+n+ij 2P+, +

g+d
pm+n

Evaluation of -N+n(J-M)+nQ

Frcmthereeults for 1? and J-M

-N+n(J -M)=
-(m + 1)(P + l)n(2p + l)n+l

&~(m+2)+n+iJ

1



48

For Q, the development is:

and with f = ~p, the

5

QPn=J( 1. P+l) pl
o

following ~ession is

NACA TN 2158

.

w

obtained for n # O:

m + 1 (p + l)n(2pQ.=— + l)n
n

L( 1
‘-l-p m+l)+nP

Then, by stistitution and simplification, for n#O,

-N+n(J -M) +nQ-=
-(m + 1)(p + l)n+1(2p + l)n(pm + n)

(B3)

&[p(m+2) +n+~[p(m+l)+~

If use is made of the previously derived result that nQ = 1 for n = O; ‘
the fo~owing equation is obtained

-N+n(J -M)+

If n is placed equal to zero in
therefore, egyation (B3) is valid

Then, for all values of n,

.
for n = O:

nQ =
-m(p + 1) (B4)

p(m+2)+l

~quation (B3), equation (B4) results;
FOF n = O as well as n +0.

,

~N+n(J-M)+nQ= 12(p + l)p[p(m+ 2) + n + 1

m
~+nI p(m+l)+n

.

.

---- --- ----- -.-—- -- —-- —~-- .—.._— — ..— ——
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